
DIN-Baureihe DN 50¹) bis 1200, PN 6 bis 160²) Kurzbaulänge nach DIN EN 558-1, Tabelle 11, Grundreihe 16 (entspr. DIN 3202, Teil 3, Reihe K 3)

DN 150 bis 1200

Verwendung

Für Flüssigkeiten, Gase und Dämpfe, z. B. in Heizungs-, Klima-, Wasserversorgungs- und Kühlanlagen, in Dampf- und Kondensatsystemen, in Erdöl- und Erdgasleitungen sowie für den Einsatz in Seewasser, in Kläranlagen und hinter Gebläsen und Verdichtern. Ausführung mit Beschichtung: Einsatz bei Trinkwasser. Ausführung mit Gummierung: Einsatz für Seewasser. Ausführung mit Schließdämpfung: bei Druckstoßproblemen. Metallisch oder elastisch dichtend (EPDM, FPM).

- 1) DN 50, 65 und 80 nur als BB ... "A" (Edelstahl) lieferbar.
- 2) Für Druckstufen > PN 40 und Nennweiten > DN 500 bitte entsprechende Datenblätter anfordern.

Werkstoffe

Ausführung	Teilebezeichnung	Nennweite DN	EN	vergleichbar mit ASTM 4)	
Grauguss	Gehäuse	150 – 1200	EN-JL 1040	A 126 Class A	
(BB G)	Doppelklappe	150 – 1200	EN-JS 1030	A 536 60-40-18	
C-Stahl (BB C)	Gehäuse	100 + 125	1.0460	A 105	
	Gehäuse	ab 150	1.0619	A 216 WCB	
	Doppelklappe	100 + 125	1.4006	A 182 F6	
	Doppelklappe	ab 150	1.0619	A 216 WCB	
Edelstahl	Gehäuse	50 – 125	1.4404	A 182 F 316 L	
	Gehäuse	ab 150	1.4408	A 351 CF 8 M	
	Doppelklappe	50 – 125	1.4404	A 182 F 316 L	
	Doppelklappe	ab 150	1.4408	A 351 CF 8 M	

⁴) Unterschiede der chemischen und physikalischen Eigenschaften zu EN beachten.

Einsatzgrenzen bei metallischem Abschluss

Ausführung	Тур)	PN	PN Betriebsüberdruck [bar] bei Temperaturen [°C] ⁵)										
				20	100	150	200	250	300	350	400	450	500	550
Grauguss	ВВ	11 G / 21 G	6	6	6	5,4	4,8	4,2	3,6	_	_	_	_	_
bis -10 °C bei		12 G / 22 G	10	10	10	9,0	8,0	7,0	6,0	_	_	_	_	_
Nenndruck		14 G / 24 G	16	16	16	14,4	12,8	11,2	9,6	_	-	_	_	_
C-Stahl	ВВ	12 C / 22 C	10	10	10	10	9,6	8,9	7,6	7,1	6,7	6,4	_	_
bis -10 °C bei		14 C / 24 C	16	16	16	16	15,3	14,2	12,1	11,4	10,7	10,3	_	_
Nenndruck		15 C / 25 C	25	25	25	25	23,9	22,2	18,9	17,8	16,7	16,1	_	_
		16 C / 26 C	40	40	40	40	38,2	35,6	30,2	28,4	26,7	25,8	-	_
		17 C	63	63	58,5	54,6	47,6	44,8	40,6	37,8	36,4	_	_	_
		18 C	100	100	93,3	86,7	75,6	71,1	64,4	60	57,8	_	_	_
		19 C	160	160	149,3	138,7	121	113,8	103	96	92,5	_	_	
Edelstahl	ВВ	12 A / 22 A	10	10	9,8	9,1	8,5	8,1	7,8	7,5	7,3	7,2	7	6,9
bis –200 °C bei		14 A / 24 A	16	16	15,6	14,6	13,7	13	12,4	12	11,7	11,4	11,2	11,1
Nenndruck		15 A / 25 A	25	25	24,4	22,8	21,3	20,3	19,4	18,8	18,2	17,9	17,6	17,3
		16 A / 26 A	40	40	39,1	36,4	34,1	32,5	31,1	30	29,2	28,6	28,1	27,7
		17 A	63	63	61,6	57,4	53,8	51,2	49	47,3	45,9	45,1	44,2	43,7
		18 A	100	100	93,3	86,7	82,2	77,8	74,2	71,6	69,3	67,6	66,2	63,1
		19 A	160	160	149,3	138,7	131,5	124,5	118,7	114,6	110,9	108,2	105,9	101,0

 $^{^{5}}$) Für Temperaturen über $+300\,^{\circ}$ C sind Sonderfedern aus Inconel X 750 erforderlich. BB 12A-18A DN 50 – 125 bis max. 500 $^{\circ}$ C einsetzbar.

DIN-Baureihe DN 50 bis 1200, PN 6 bis 1601)

BB-Ausführungen

Тур				Beschichtung			
	metallisch	EPDM (-40 bis 150°C) ¹)	FPM (-25 bis 200 °C) ¹)	NBR (–30 bis 110°C)¹)	PTFE ²) (-25 bis 200 °C) ¹)	LEVASINT®4)	Gummierung ⁵)
BBG	0	Х	0	0	_	0	0
ввС	Х	0	0	0	O ³)	O ⁶)	O ⁶)
ввА	Х	0	0	0	O ³)	-	_

- 1) Geräte-Einsatzgrenzen beachten!
- 2) FPM-Ring mit PTFE ummantelt
- 3) Ab DN 150. Bei kleineren DN nicht möglich.
- 4) Gehäuse innen und außen mit LEVASINT® beschichtet, Sitzdichtung EPDM. Innenteile wahlweise Bronze oder Edelstahl. Einsatzgrenze –10 °C bis 70 °C. LEVASINT ist ein Produkt der Bayer AG, Leverkusen.

X: Standard

X : Standard

O : optional

- : nicht möglich

- 5) Gehäuse innen gummiert, Sitzdichtung EPDM. Innenteile wahlweise Bronze oder Edelstahl. Einsatzgrenze –10 °C bis 90 °C.
- 6) Ab DN 150. Bei kleineren DN "BB....A" verwenden.

Тур	Schließ-	Erdungs-						
	dämpfung ⁷)	anschluss	schraube	ohne Feder	Inconelfeder8)	2 WA ¹⁰)	7 WA ¹¹)	5 VO ¹²)
BBG	0	_	0	0	_	0	Χ	0
ввС	0	0	O ₉)	0	0	0	Х	0
ввА	-	0	O ⁹)	0	0	0	Х	0

- 7) Ab DN 200 bis einschließlich DN 800.
 - Max. Einsatztemperatur 110 °C. Siehe Seite 39.
- 8) Inconel X 750 (Für Temperaturen über 300 °C erforderlich). Öffnungsdruck 7 mbar (Feder 7 WAI).
- 9) Ab DN 150
- ¹⁰) Feder für 2 mbar Öffnungsdruck bei Einbau der Klappe in waagerechter Rohrleitung.
- ¹¹) Feder für 7 mbar Öffnungsdruck (Standard) bei Einbau der Klappe in waagerechter Rohrleitung.
- 12) Feder für 5 mbar Öffnungsdruck bei Einbau der Klappe in senkrechter Rohrleitung bei Durchfluss von oben nach unten.

Öffnungsdrücke

Druckdifferenzen bei Volumenstrom Null.

DN	Öffnungsdrücke [mbar]									
	bei	Durchflus	ss von ur	nten						
	ohne		nit Feder	n						
	Federn	7 WA 7 WAI	2 WA	5 VO						
50	6	13	8	17						
65	6	13	8	17						
80	7	14	9	19						
100	7	14	9	19						
125	10	17	12	25						
150	11 (15)	18 (22)	13 (17)	27 (35)						
200	12 (18)	19 (25)	14 (20)	29 (41)						
250	14 (18)	21 (25)	16 (20)	33 (41)						
300	15 (25)	22 (32)	17 (27)	35 (55)						
350	17 (25)	24 (32)	19 (27)	39 (55)						
400	19 (25)	26 (32)	21 (27)	43 (55)						
450	22	29	24	49						
500	23 (28)	30 (35)	25 (30)	51 (61)						

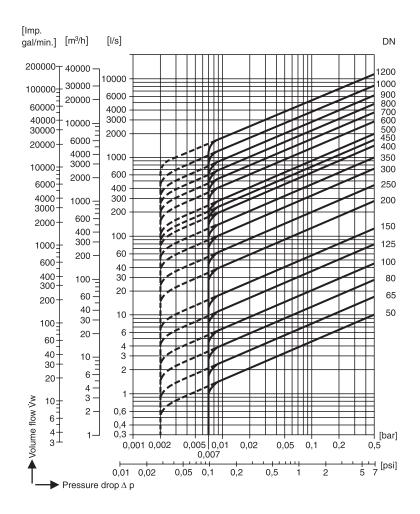
Klammerwerte gelten für BB 17/18/19.

Druckverlustdiagramm

Werte für Wasser bei 20 °C. Zum Abschätzen der Druckverluste bei anderen Medien ist der äquivalente Wasservolumenstrom zu berechnen.

Diagrammwerte basieren auf Messungen an Klappen mit Federn 7 mbar in waagerechter Leitung. Bei senkrechtem Einbau ergeben sich nur im Bereich der Teilöffnung Abweichungen.

Gestrichelte Linien gelten für Klappen mit Federn 2 mbar in horizontalen Leitungen.

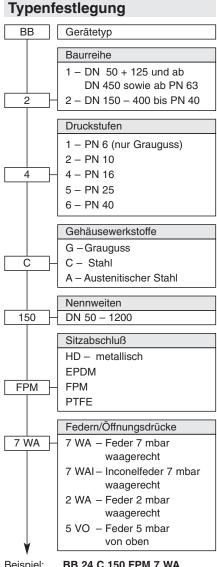

Das Diagramm und die Durchflusskennwerte gelten bis einschl. PN 40. Für Geräte höherer PN erhöhen sich die Zeta-Werte und die Druckverluste bei gleichen Mengen um ca. 20 %. Die k_{vs}-Werte verringern sich entsprechend.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = äquivalenter Wasservolumenstrom in [l/s] oder [m³/h]

ρ = Dichte des Mediums (Betriebszustand) in [kg/m³]

 V = Volumenstrom des Mediums (Betriebszustand) in [l/s] oder [m³/h]

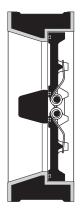


DIN-Baureihe DN 50 bis 1200, PN 6 bis 1601)

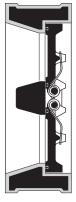
Maße, Gewichte PΝ Gew.2) DN Baumaße [mm] Gew.2) DN PΝ Baumaße [mm] [kg] [kg] 2,5 2,5 50^{3}) 2,5 2,5 65^{3}) 803) 62,5 7,5 7,5 80,5 13,5 13,5 18,5

1) Für Druckstufen > PN 40 und Nennweiten > DN 500 bitte entsprechende Datenk	lätter
anfordern.	

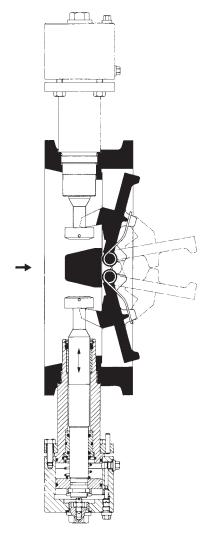
Beispiel: BB 24 C 150 FPM 7 WA Erläuterung: Doppelrückschlagklappe BB 24 PN 16 aus GS-C 25, DN 150 mit FPM-Dichtung und Feder 7 mbar für waagerechten Einbau


²⁾ Die Gewichte gelten für GP 240 GH (GS-C 25).

³⁾ DN 50, 65 und 80 nur als BB ... "A" aus Edelstahl lieferbar.


DIN-Baureihe DN 50 bis 1200, PN 6 bis 1601)

BB mit Beschichtung ab DN 150



Kunststoff-Beschichtung

Doppelklappen, Lagerbolzen und Schließfedern nicht beschichtet. Doppelklappen standardmäßig mit EPDM-O-Ringen bzw. auf Wunsch metallisch dichtend.

Bei Druckstoßproblemen BB mit patentierter Schließdämpfung in DN 200 bis 800.

BB mit Beschichtung

Verwendung

Ausführung mit Kunststoff-Beschichtung: Einsatz bei Trinkwasser und Seewasser. Ausführung mit Gummierung: Einsatz für Seewasser. Ausführung mit Schließdämpfung: bei Druckstoßproblemen. Metallisch oder elastisch dichtend (EPDM, FPM).

 Für Druckstufen > PN 40 und Nennweiten > DN 500 bitte entsprechende Datenblätter anfordern.

Einsatzgrenzen

Kunststoff Beschichtung –10 °C bis 70 °C Gummierung –10 °C bis 90 °C

BB mit Schließdämpfung

Verwendung

Bei Druckstoßproblemen in flüssigkeitsführenden Rohrleitungssystemen. Zur Abschätzung möglicher Druckstoßprobleme bitte Fragebogen anfordern.

Einsatzgrenzen

Nennweite DN	[mm]	200	250	300	350	400	500	600	700	800
Neilliweite DN	[ZoII]	8	10	12	14	16	20	24	28	32
zul. Betriebsüberdruck	[bar]	16	16	13	9	13	9	5	8	6
zul. Betriebstemperatur	[°C]	110								
zul. Überdruck auf der Zulaufseite bei abgestellter Pumpe	[bar]					0,5				